Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 351: 124083, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38697244

RESUMO

Widespread use of tetracycline (TC) results in its persistent residue and bioaccumulation in aquatic environments, posing a high toxicity to non-target organisms. In this study, a bimetal-doped composite material Ag3PO4/MIL-101(Fe,Cu) has been designed for the treatment of TC in aqueous solutions. As the molar ratio of Fe/Cu in composite is 1:1, the obtained material AP/MFe1Cu1 is placed in an aqueous environment under visible light irradiation in the presence of 3 mM peroxydisulfate (PDS), which forms a photo-Fenton-like catalytic system that can completely degrade TC (10 mg/L) within 60 min. Further, the degradation rate constant (0.0668 min-1) is 5.66 and 7.34 times higher than that of AP/MFe and AP/MCu, respectively, demonstrating a significant advantage over single metal-doped catalysts. DFT calculations confirm the strong adsorption capacity and activation advantage of PDS on the composite surface. Therefore, the continuous photogenerated electrons (e-) accelerate the activation of PDS and the production of SO4•-, resulting in the stripping of abundant photogenerated h + for TC oxidation. Meanwhile, the internal circulation of FeⅢ/FeⅡ and CuⅡ/CuⅢ in composite also greatly enhances the photo-Fenton-like catalytic stability. According to the competitive dynamic experiments, SO4•- have the greatest contribution to TC degradation (58.93%), followed by 1O2 (23.80%). The degradation intermediates (products) identified by high-performance liquid chromatography-mass spectrometry (HPLC/MS) technique indicate the involvement of various processes in TC degradation, such as dehydroxylation, deamination, N-demethylation, and ring opening. Furthermore, as the reaction proceeds, the toxicity of the intermediates produced during TC degradation gradually decreases, which can ensure the safety of the aquatic ecosystem. Overall, this work reveals the synergy mechanism of PDS catalysis and photocatalysis, as well as provides technical support for removal of TC-contaminated wastewater.

2.
Sci Total Environ ; 912: 169103, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38065508

RESUMO

Increasing eutrophication has led to a continuous deterioration of many aquatic ecosystems. Polyphosphate-accumulating organisms (PAOs) can provide insight into the human response to this challenge, as they initiate enhanced biological phosphorus removal (EBPR) through cyclical anaerobic phosphorus release and aerobic phosphorus uptake. Although the limiting environmental factors for PAO growth and phosphorus removal have been widely discussed, there remains a gap in the knowledge surrounding the differences in the type and phosphorus removal efficiencies of natural and engineered PAO systems. Furthermore, due to the limitations of PAOs in conventional wastewater treatment environments, there is an urgent need to find functional PAOs in extreme environments for better wastewater treatment. Therefore, it is necessary to explore the effects of extreme conditions on the phosphorus removal efficiency of PAOs as well as the types, sources, and characteristics of PAOs. In this paper, we summarize the response mechanisms of PAOs, denitrifying polyphosphate-accumulating organisms (D-PAOs), aerobic denitrifying polyphosphate-accumulating organisms (AD-PAOs), and sulfur-related PAOs (S-PAOs). The mechanism of nitrogen and phosphorus removal in PAOs is related to the coupling cycles of carbon, nitrogen, phosphorus, and sulfur. The genera of PAOs differ in natural and engineered systems, but PAOs have more diversity in aquatic environments and soils. Recent studies on the impact of several parameters (e.g., temperature, carbon source, pH, and dissolved oxygen) and extracellular polymer substances on the phosphorus removal efficiency of PAOs in natural and engineered systems are further discussed. Most of the PAOs screened under extreme conditions still had high phosphorus removal efficiencies (>80.0 %). These results provide a reference for searching for PAOs with different adaptations to achieve better wastewater treatment.


Assuntos
Fósforo , Polifosfatos , Humanos , Ecossistema , Glicogênio , Reatores Biológicos , Carbono/química , Nitrogênio , Enxofre , Esgotos
3.
Environ Pollut ; 323: 121322, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36813103

RESUMO

Developing wide spectra-responsive photocatalysts has attracted considerable attention in the photocatalytic technology to achieve excellent catalytic activity. Ag3PO4, with strong response to light spectra shorter than 530 nm, shows extremely outstanding photocatalytic oxidation ability. Unfortunately, the photocorrosion of Ag3PO4 is still the biggest obstacle to its application. Herein, the La2Ti2O7 nanorod was used to anchor Ag3PO4 nanoparticles in this study, and a novel Z-Scheme La2Ti2O7/Ag3PO4 heterostructure composite was constructed. Remarkably, the composite showed strong responsive to most of the spectra in natural sunlight. The Ag0 formed in-situ acted as the recombination center of photogenerated carriers, which promoted their efficient separation and contributed to the improved photocatalytic performance of the heterostructure. When the mass ratio of Ag3PO4 in the La2Ti2O7/Ag3PO4 catalyst was 50%, the degradation rate constant of Rhodamine B (RhB), methyl orange (MO), chloroquine phosphate (CQ), tetracycline (TC), and phenol under natural sunlight irradiation were 0.5923, 0.4463, 0.1399, 0.0493, and 0.0096 min-1, respectively. Furthermore, the photocorrosion of the composite was greatly inhibited, 76.49% of CQ and 83.96% of RhB were still degraded after four cycles. Besides, the holes and O2•- played a significant role in RhB degradation, and it included multiple mechanisms of deethylation, deamination, decarboxylation, and cleavage of ring-structures. Moreover, the treated solution can also show safety to the water receiving environment. Overall, the synthesized Z-Scheme La2Ti2O7/Ag3PO4 composite exhibited immense potential for removing various organic pollutants through photocatalytic technology under natural sunlight irradiation.


Assuntos
Nanotubos , Luz Solar , Titânio , Fosfatos/química , Compostos de Prata
4.
Artigo em Inglês | MEDLINE | ID: mdl-36776542

RESUMO

Background: Axillary lymph node dissection (ALND) can be safely avoided in women with T1 or T2 primary invasive breast cancer (BC) and one to two metastatic sentinel lymph nodes (SLNs). However, cancellation of ALND based solely on SLN biopsy (SLNB) may lead to adverse outcomes. Therefore, preoperative assessment of LN tumor burden becomes a new focus for ALN status. Objective: This study aimed to develop and validate a nomogram incorporating the radiomics score (rad-score) based on automated breast ultrasound system (ABUS) and other clinicopathological features for evaluating the ALN status in patients with early-stage BC preoperatively. Methods: Totally 354 and 163 patients constituted the training and validation cohorts. They were divided into ALN low burden (<3 metastatic LNs) and high burden (≥3 metastatic LNs) based on the histopathological diagnosis. The radiomics features of the segmented breast tumor in ABUS images were extracted and selected to generate the rad-score of each patient. These rad-scores, along with the ALN burden predictors identified from the clinicopathologic characteristics, were included in the multivariate analysis to establish a nomogram. It was further evaluated in the training and validation cohorts. Results: High ALN burdens accounted for 11.2% and 10.8% in the training and validation cohorts. The rad-score for each patient was developed based on 7 radiomics features extracted from the ABUS images. The radiomics nomogram was built with the rad-score, tumor size, US-reported LN status, and ABUS retraction phenomenon. It achieved better predictive efficacy than the nomogram without the rad-score and exhibited favorable discrimination, calibration and clinical utility in both cohorts. Conclusion: We developed an ABUS-based radiomics nomogram for the preoperative prediction of ALN burden in BC patients. It would be utilized for the identification of patients with low ALN burden if further validated, which contributed to appropriate axillary treatment and might avoid unnecessary ALND.

5.
J Hazard Mater ; 449: 131024, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-36821899

RESUMO

Here, we show that the adverse environmental and health effects of tetracycline (TC) can be efficiently reduced by encapsulating Ag3PO4 into MIL-101(Fe) to construct a Ag3PO4/MIL-101(Fe) heterojunction composite through advanced oxidation processes, such as Fenton catalysis, photocatalysis, and photo-Fenton catalysis. Notably, the reaction can be driven by natural sunlight and does not require any artificial energy source. Remarkably, the optimal degradation of TC can be achieved under different compositions of the composite system through photocatalysis and photo-Fenton catalysis. For photo-Fenton catalysis, the maximum degradation rate of TC (2.5730 min-1) is achieved when the mass ratio of MIL-101(Fe) to Ag3PO4 in the composite is 5:1, which is 31.65- and 3.12-fold of that in the Ag3PO4 + PDS + Sunlight and MIL-101(Fe) + PDS+ Sunlight catalyst systems, respectively. Moreover, the internal conversion of matrix during photocatalysis and Fenton catalysis processes inhibits the photocorrosion of Ag3PO4 and improves the reusability of the composite. Furthermore, it is found that both radical and non-radical species participate in the TC degradation. Besides, the degradation products and catalytic mechanism of Ag3PO4 and Ag3PO4/MIL-101(Fe) systems are explored. The toxicity evaluation results suggest that the intermediates produced during Ag3PO4/MIL-101(Fe) catalysis have a lower biotoxicity than those produced during Ag3PO4 catalysis. Overall, this work provides an effective strategy to inhibit the inherent photocorrosion of Ag3PO4 and establishes an efficient catalytic system for the treatment of organic-contaminated wastewater under natural sunlight conditions.


Assuntos
Antibacterianos , Luz Solar , Tetraciclina , Catálise , Peróxido de Hidrogênio
6.
Environ Pollut ; 316(Pt 2): 120665, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395910

RESUMO

Biochar obtained from biomass waste through pyrolysis has significant potential in wastewater treatment due to its large specific surface area and multi-functional active sites. In current study, sorghum straw (SS) was pyrolyzed to prepare various biochar under nitrogen atmosphere. Adsorption kinetics of prepared biochar toward tartrazine (TTZ) was systematically investigated, and the biochar was also characterized by using multiple techniques to explore the contribution of physicochemical properties to adsorption. Then, the biochar with optimum TTZ adsorption performance, was also applied as a catalyst for peroxydisulfate (PDS) activation to degrade TTZ. Factors including PDS concentration, solution pH, and reaction temperature were examined. The optimized degradation rate constant of TTZ (1.1627 min-1) was achieved under the conditions at 2 mM PDS, pH of 3, and 23 °C. In addition, the free radical trapping experiments and EPR spectra revealed that the reactive substances of electron (e-), 1O2, SO4•-, O2•-, and •OH contributed to TTZ degradation. Density Functional Theory (DFT) also concluded that the atoms C(6), O(12), N(16), N(17), C(18) and N(22) in TTZ molecule showed larger f0 values which are vulnerable to radical attack. Therefore, the synergistic mechanism embodying adsorption and radical/non-radical processes were proposed. Besides, the degradation pathways of TTZ were identified with the aid of HPLC/MS technique, indicating that multiple reaction processes containing the symmetrical cleavage of azo bonds, the asymmetrical cleavage of C-N, desulfonation, and benzene-like structure cracking were involved. Therefore, this study provides a simple and effective catalytic system for TTZ degradation, and also realizes the resource utilization of solid waste.


Assuntos
Sorghum , Adsorção , Tartrazina , Grão Comestível
7.
Water Res ; 207: 117816, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740165

RESUMO

A solar-light-driven magnetic photocatalyst, reduced-graphene-oxide/Fe,N-TiO2/Fe3O4@SiO2 (RGOFeNTFS), was developed for the photocatalytic disinfection of different strains of bacteria: gram-negative Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium), and gram-positive Enterococcus faecalis (E. faecalis). The different responses of the bacteria during the reaction were investigated. Gram-positive E. faecalis was found to be more susceptible to photocatalytic disinfection and exhibited a higher leakage of intracellular components than the two gram-negative bacteria. The interactions between the bacteria and RGOFeNTFS were analyzed for Zeta potential, hydrophilicity and SEM. Under the experimental conditions, the opposite surface charges of the bacteria (negative Zeta potential) and RGOFeNTFS (positive Zeta potential) contribute to their interactions. With a more negative Zeta potential (than E. coli and E. faecalis), S. typhimurium interacts more strongly with RGOFeNTFS and is mainly attacked by •OH near the photocatalyst surface. E. coli and E. faecalis (with less negative Zeta potentials) interact less strongly with RGOFeNTFS, and compete for the dominant reactive species (•O2-) in the bulk solution. Therefore, the co-existence of bacteria significantly inhibits the photocatalytic disinfection of E. coli and E. faecalis, but insignificantly for S. typhimurium. Moreover, photocatalytic disinfection using RGOFeNTFS show potential for treating real sewage, which meets the local discharge standard (of E. coli) after a 60-min reaction. In real sewage, different bacteria are disinfected simultaneously.


Assuntos
Desinfecção , Esgotos , Catálise , Enterococcus faecalis , Escherichia coli , Luz , Dióxido de Silício , Titânio
8.
J Hazard Mater ; 416: 125891, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492829

RESUMO

CoP nanoparticle-loaded N-doped graphitic C3N4 nanosheets (CoP/N-g-C3N4) were fabricated via a facile three-step method to degrade pharmaceuticals and personal care products (PPCPs) via a visible-light-driven (VLD) peroxymonosulfate (PMS) activation system. 2 ppm carbamazepine (CBZ) can be removed completely within 10 min by the VLD-PMS system with a kinetic constant of k = 0.29128 min-1, as 25.8 times compared to that under dark conditions (k = 0.01128 min-1). The experimental and theoretical results showed that the doped graphitic N atoms could modulate the electronic properties of the g-C3N4 nanosheets. Subsequently, the Density Functional Theory (DFT) explained that CoP showed preference to bonding with the nitrogen atoms involved in the newly formed NË­N bond, and the Co‒N bond dramatically enhanced the transfer of photo-generated electrons from the N-g-C3N4 nanosheets. Electron paramagnetic resonance (EPR) tests show that singlet oxygen (1O2) plays a leading role in this case. Moreover, PMS molecules are also tended to be absorbed onto the electron-deficient carbon atoms near the newly formed NË­N bonds for PMS reduction, synergistically enhancing the degradation efficiency for CBZ and benzophenone-3 (BZP). The newly established VLD-PMS activation system was shown to treat the actual sewage in Hong Kong sewage treatment plants (STPs) very well. This work supplements the fundamental theory of radical and non-radical pathways in the sulfate radical (SO4•-)-based advanced oxidation process (SR-AOP) for environmental cleanup purposes.


Assuntos
Cosméticos , Grafite , Nanopartículas , Preparações Farmacêuticas , Peróxidos , Oxigênio Singlete
9.
Environ Int ; 154: 106572, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33895440

RESUMO

In this study, we constructed an innovative photo-electrocatalysis-assisted peroxymonosulfate (PEC/PMS) system to degrade pharmaceuticals and personal care products (PPCPs). A hollow-structured photoanode (i.e., Pt@CeO2@MoS2) was specifically synthesized as a photoanode to activate PMS in the PEC system. As proof of concept, the Pt@CeO2@MoS2 photoanode exhibited superior degradation performance toward carbamazepine (CBZ) with PMS assistance. Specifically, the kinetic constant of PEC/PMS (k = 0.13202 min-1) could be enhanced about 87.4 times compared to that of the PEC system (0.00151 min-1) alone. The PMS activation mechanism revealed that the synergistic effect between the hollow material and the change of surface valence states (Ce3+ to Ce4+) and (Mo4+ to Mo6+) contribute to enhancing the degradation efficiency of the visible-light-driven PEC/PMS process. The scavenger testing and EPR showed that 1O2, O2•-, SO4•- and •OH play dominant roles in the SR-AOPs. Furthermore, the applicability of Pt@CeO2@MoS2 used in SR-AOPs was systematically investigated regarding of the reaction parameters and identification of intermediates and dominant radicals as well as the mineralization rate and stability. The outcomes of this study can provide a new platform for environmental remediation.


Assuntos
Cosméticos , Preparações Farmacêuticas , Molibdênio , Peróxidos
10.
Sci Total Environ ; 758: 143953, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33321366

RESUMO

This critical review covers ways to improve TiO2-based photocatalysts, how water characteristics may affect photocatalytic disinfection, and strategies to tackle the challenges arising from water characteristics. Photocatalysis has shown much promise in the disinfection of water/wastewater, because photocatalysis does not produce toxic by-products, and is driven by green solar energy. There are however several drawbacks that are curbing the prevalence of photocatalytic disinfection applications: one, the efficiency of photocatalysts may limit popular utilization; two, the water characteristics may present some challenges to the process. TiO2-based photocatalysts may be readily improved if composited with noble metals or carbon nanomaterials. Noble metals give TiO2-based composites a higher affinity for dissolved oxygen, and induce plasmonic and Schottky effects in the TiO2; carbon nanomaterials with a tunable structure, on the other hand, give the composites an improved charge carrier separation performance. Other than photocatalyst materials, the characteristics of water/wastewater is another crucial factor in the photocatalysis process. Also examined in this review are the crucial impacts that water characteristics have on photocatalysts and their interaction with bacteria. Accordingly, strategies to address the challenge of water characteristics on photocatalytic disinfection are explored: one, to modify the semiconductor conduction band to generate long-lifetime reactive species; two, to improve the interaction between bacteria and photocatalysts.


Assuntos
Desinfecção , Nanoestruturas , Bactérias , Carbono , Catálise , Titânio , Água
11.
Water Res ; 190: 116705, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33285454

RESUMO

To evaluate the green photocatalytic disinfection for practical applications, disinfection of different types of real sewage using magnetic photocatalyst RGO/Fe,N-TiO2/Fe3O4@SiO2 (RGOFeNTFS) under simulated solar light was investigated: low-salinity sewage after tertiary treatment, low-salinity sewage after secondary biological treatment, high-salinity sewage after secondary biological treatment, and high-salinity sewage after chemically enhanced primary treatment. The classification of the sewage as high and low-salinity is based on the regions of sewage source that use seawater and freshwater for toilet flushing, respectively. It shows potential of solar-light-driven photocatalytic disinfection in low-salinity sewage: around 20 min (for sewage after tertiary treatment) and 45 min (for sewage after secondary treatment) of photocatalytic disinfection are required for sewage to meet the discharge standard, and no bacterial regrowth is observed in the treated sewage after 48 h. However, due to the poorer water quality, the high-salinity sewage requires a relatively long reaction time (more than 240 min) to meet the discharge standard, showing minimal practical significance. Further, the complex characteristics of real sewage, such as organic matter, suspended matter, multivalent-ions, pH and DO level significantly influence photocatalytic disinfection, and should be carefully reviewed in evaluating the photocatalytic disinfection of sewage. Besides, RGOFeNTFS shows a good reusability over three cycles for photocatalytic disinfection of low-salinity sewage samples. Moreover, the non-toxicity, indicated by phytoplankton in seawater, of both RGOFeNTFS (<= 3 g/L) and treated low-salinity sewage demonstrates the feasibility of the practical application of photocatalytic disinfection using RGOFeNTFS under irradiation of solar light.


Assuntos
Desinfecção , Esgotos , Catálise , Luz , Dióxido de Silício , Titânio
12.
Cancer Manag Res ; 12: 10789-10797, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33149684

RESUMO

BACKGROUND: It is controversial whether contralateral prophylactic central neck dissection (PCND) should be performed for patients with solitary and clinical lymph node negative (cN0) papillary thyroid carcinoma (PTC) although routine ipsilateral PCND is required. OBJECTIVE: The aim of this study was to develop an improved nomogram including clinical features, ultrasound, and acoustic radiation force impulse (ARFI) elastography for the prediction of contralateral central lymph node metastasis (CLNM) in patients with solitary and cN0 PTC in the preoperative period. MATERIALS AND METHODS: A total of 340 patients were retrospectively included as the training cohort and 170 patients as the external validation cohort. Patients were grouped according to the pathological results of contralateral CLNM. The association between the clinical characteristics, ultrasound, and ARFI elastography and the risk for contralateral CLNM were analyzed. A nomogram was established based on the result of multivariable logistic analysis to predict the risk of contralateral CLNM, which was assessed by internal and external validation. RESULTS: CLNM was found in 213 patients (41.8%), among whom 142 (27.8%) had ipsilateral CLNM and 95 (18.6%) had contralateral CLNM (including 68 (13.3%) with bilateral CLNM). Multivariable analysis revealed that patients with younger age, male gender, larger tumor size, closer distance from the capsule, microcalcification, and larger SWVmean were independent predictors associated with the contralateral CLNM (P < 0.05), which was served as the basis of the nomogram. It showed good discrimination (C-index: 0.856) and calibration (χ2 = 9.028, P = 0.340, Hosmer-Lemeshow test) in the training cohort, and good discrimination was maintained in the external validation cohort (C-index: 0.792). CONCLUSION: The nomogram utilizing the features of ultrasound combined with ARFI elastography in preoperatively predicting the risk of contralateral CLNM in patients with solitary and cN0 PTC was established, which showed superior performance both in internal and external validation.

13.
J Colloid Interface Sci ; 573: 336-347, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32298927

RESUMO

The superiority of a hierarchical photocatalyst for water treatment applications is mostly rationalized in terms of two features: light harvestability and adsorption capability. Not only a conclusive evidence to support these claims is missing, knowledge on the 'key material property' governing photocatalyst performance is also unclear. Herein, a hierarchical BiOBr photocatalyst was studied in comparison with its plate-like counterpart. Found from the photocatalytic water treatment experiments, the hierarchical BiOBr exhibited three times faster reaction kinetics compared to the plate-like BiOBr. While light harvestability and adsorption capability of the two structures was not significantly different, a ca. 36% higher photocurrent and a ca. 16% longer charge carrier lifetime observed in hierarchical BiOBr demonstrated its superior charge carrier separability. Compared to other material properties, crystal disorders were found to predominantly influence the photocatalytic activity, which was verified through Raman spectroscopy, high resolution transmission electron microscopy, and X-ray diffraction analyses. The findings provide an insight into the role of crystallographic disorders in hierarchical photocatalysts which is a useful advancement towards the pursuit of rational photocatalyst design particularly for interfacial photocatalytic water treatment applications.

14.
Water Res ; 170: 115356, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31816569

RESUMO

The ability of the TiO2-based photocatalysis process to mineralize organic pollutants has attracted attention worldwide for the degradation of recalcitrant pharmaceuticals and personal care products (PPCPs). Nevertheless, (1) the limited exploitation of the solar spectrum, i.e., activation under UV light (only 2-3% of solar spectrum), and (2) the high recombination rate of photo-generated charge carriers, i.e., electrons and holes, have limited its application which can, however, be improved by developing a TiO2-based heterojunction. The objective of this critical review paper is to discuss the recent developments (2009-2019) in visible-light-driven (VLD) TiO2-based heterojunctions for PPCP degradation and their degradation mechanisms. Compared to the conventional heterojunctions, Schottky and Z-scheme heterojunctions, which are non-conventional heterojunctions, are found to be more effective for PPCP degradation due to their more efficient separation of charge carriers and the occurrence of redox reactions at a relatively higher redox potential. Furthermore, the enhancement strategies for the development of a VLD TiO2-based heterojunction are also explored which can be achieved by selecting the (1) highly photocatalytically active {001} facet of anatase TiO2, (2) synthesis methods governing the structural changes at the junction interface, and (3) heterojunction components which can efficiently generate the powerful •OH radicals. The challenges in practical applications are also discussed which include factors, viz., cost reduction, recycling, stability, byproducts analysis, evaluation of the environmental effectiveness, and reactor design and scale-up of the VLD TiO2-based heterojunctions. Accordingly, the prospects of VLD TiO2-based heterojunctions for PPCP degradation in real environmental applications are discussed.


Assuntos
Luz , Catálise , Oxirredução
15.
Sci Total Environ ; 686: 878-887, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31200308

RESUMO

Despite numerous developments in the field of heterogeneous photocatalysis, particularly its environmental applications, there remain fundamental uncertainties regarding the key properties which primarily govern the performance of a photocatalyst. In this study, four visible-light-driven magnetic photocatalysts, viz., Ag/Fe,N-TiO2/Fe3O4@SiO2, g-C3N4/TiO2/Fe3O4@SiO2, BiOBr/Fe3O4@SiO2, and BiOBr0.9I0.1/Fe3O4@SiO2, were synthesized and comparatively studied in terms of their material characteristics, charge transfer efficiency, and photocatalytic performance in the degradation of two model pharmaceuticals and personal care products (PPCPs), ibuprofen and benzophenone-3. Amongst the tested photocatalysts, the g-C3N4/TiO2/Fe3O4@SiO2 exhibited the fastest degradation kinetics for both the PPCPs. Property-performance relationships were evaluated in which the dependence of the photocatalytic performance on various adsorption-related, electronic band-structure-related, reactive species-related, and charge carriers-related properties was examined. The strongest performance relationship was found to be with photocurrent density-an indicator of charge transfer efficiency-for both PPCPs, indicating its influential role in governing the photocatalytic performance. The findings unfold a potential research direction towards exploration of factors which can enhance the charge transfer efficiency, thereby possibly enabling the rational design of highly efficient photocatalysts for PPCPs removal.

16.
Chemosphere ; 217: 869-878, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30458422

RESUMO

A visible-light-driven and magnetic photocatalyst Ag/Fe,N-TiO2/Fe3O4@SiO2 (AgFeNTFS) was synthesized through a multi-step method. AgFeNTFS was tested for the photocatalytic disinfection of Escherichia coli (E. coli) and degradation of bisphenol A (BPA) under visible light irradiation, separately and simultaneously. The results showed that a 6.3-log reduction in cell density of E. coli was achieved and BPA (2 mg/L) was completely removed by AgFeNTFS in the separated photocatalytic processes within 120 min. In the simultaneous process, the photocatalytic disinfection of E. coli was not influenced in the presence of BPA, but the efficiency of BPA degradation was dropped by 10%. This was likely due to the competition for the same dominant reactive species of O2- and H2O2 between E. coli and BPA in the simultaneous process, as evidenced by the scavenger study and the interactions between the pollutants and AgFeNTFS. Moreover, the simultaneous photocatalytic activity of E. coli disinfection and BPA degradation by AgFeNTFS was investigated in the sewage obtained from a local wastewater treatment plant. The photocatalysis treated sewage could meet with the local disinfection discharge standard with a 3-log reduction of E. coli after 90 min, and a complete removal of BPA was achieved simultaneously after 360 min. Moreover, AgFeNTFS showed high magnetic separation efficiency and had a good reusability over three cycles for the simultaneous photocatalytic disinfection and degradation of BPA in both synthetic water and sewage. This study provides insights on the application of a reusable magnetic photocatalyst for simultaneous disinfection and degradation of BPA in sewage.


Assuntos
Compostos Benzidrílicos/química , Desinfecção/métodos , Escherichia coli/efeitos da radiação , Luz , Fenóis/química , Esgotos/química , Dióxido de Silício/química , Titânio/química , Catálise , Compostos Férricos/química , Ferro/química , Magnetismo , Prata/química
17.
Wei Sheng Wu Xue Bao ; 54(6): 641-7, 2014 Jun 04.
Artigo em Chinês | MEDLINE | ID: mdl-25272812

RESUMO

OBJECTIVE: To study the effects of co-overexpression of purF, purM, purN, purH and purD genes on adenosine production in Bacillus subtilis. METHODS: First, an extra purF gene under control of the P43 promoter was integrated into the B. subtilis chromosome at the native purF locus by single crossover, resulting in simultaneous expression of purF, purM, purN, purH and purD. Then the transcriptional levels of the five genes in the engineering strain were tested by Realtime Quantitative PCR. The activity of PRPP amidotransferase was also detected. Finally, cell growth, glucose consumption and adenosine production in engineering strain along with original strain were examined. RESULTS: The transcriptional analysis showed that purF and its downstream genes purM, purN, purH and purD were simultaneously upregulated at different level. The PRPP amidotransferase activity of engineering strain was about 2.4-fold that of original strain. Shake flask fermentation showed the improvement in adenosine yield and conversion ratio from glucose to adenosine (17.5% and 26.1%, respectively). Fed-batch fermentation by the engineering strain was conducted. Compared with the original strain, adenosine accumulation of engineering strain increased within the same fermentation time. However, the cell growth of engineering strain was retarded. CONCLUSION: The co-overexpression of purF and its downstream genes purM, purN, purH and purD could enhance the adenosine yield in the culture broth. This paper could facilitate future research by providing theoretical evidence and method of metabolic engineering.


Assuntos
Adenosina/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Purinas/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fermentação , Glucose/metabolismo , Engenharia Metabólica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...